Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Am J Physiol Endocrinol Metab ; 326(5): E555-E566, 2024 May 01.
Article En | MEDLINE | ID: mdl-38446637

Prenatal exposure to maternal diabetes has been recognized as a significant cardiovascular risk factor, increasing the susceptibility to the emergence of conditions such as high blood pressure, atherosclerosis, and heart disease in later stages of life. However, it is unclear if offspring exposed to diabetes in utero have worse vascular outcomes on a high-salt (HS) diet. To test the hypothesis that in utero exposure to maternal diabetes predisposes to HS-induced vascular dysfunction, we treated adult male wild-type offspring (DM_Exp, 6 mo old) of diabetic Ins2+/C96Y mice (Akita mice) with HS (8% sodium chloride, 10 days) and analyzed endothelial function via wire myograph and cyclooxygenase (COX)-derived prostanoids pathway by ELISA, quantitative PCR, and immunochemistry. On a regular diet, DM_Exp mice did not manifest any vascular dysfunction, remodeling, or inflammation. However, HS increased aortic contractility to phenylephrine and induced endothelial dysfunction (analyzed by acetylcholine-induced endothelium-dependent relaxation), vascular hydrogen peroxide production, COX2 expression, and prostaglandin E2 (PGE2) overproduction. Interestingly, ex vivo antioxidant treatment (tempol) or COX1/2 (indomethacin) or COX2 (NS398) inhibitors improved or reverted the endothelial dysfunction in DM_Exp mice fed a HS diet. Finally, DM_Exp mice fed with HS exhibited greater circulating cytokines and chemokines accompanied by vascular inflammation. In summary, our findings indicate that prenatal exposure to maternal diabetes predisposes to HS-induced vascular dysfunction, primarily through the induction of oxidative stress and the generation of COX2-derived PGE2. This supports the concept that in utero exposure to maternal diabetes is a cardiovascular risk factor in adulthood.NEW & NOTEWORTHY Using a unique mouse model of prenatal exposure to maternal type 1 diabetes, our study demonstrates the novel observation that prenatal exposure to maternal diabetes results in a predisposition to high-salt (HS) dietary-induced vascular dysfunction and inflammation in adulthood. Mechanistically, we demonstrated that in utero exposure to maternal diabetes and HS intake induces vascular oxidative stress, cyclooxygenase-derived prostaglandin E2, and inflammation.


Diabetes, Gestational , Endothelium, Vascular , Prenatal Exposure Delayed Effects , Prostaglandins , Animals , Female , Mice , Pregnancy , Cyclooxygenase 2/metabolism , Diabetes, Gestational/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Inflammation/metabolism , Prenatal Exposure Delayed Effects/metabolism , Prostaglandins/metabolism , Sodium Chloride, Dietary/adverse effects , Sodium Chloride, Dietary/metabolism
2.
JCI Insight ; 7(9)2022 05 09.
Article En | MEDLINE | ID: mdl-35531954

MicroRNAs (miRNAs) belong to a class of endogenous small noncoding RNAs that regulate gene expression at the posttranscriptional level, through both translational repression and mRNA destabilization. They are key regulators of kidney morphogenesis, modulating diverse biological processes in different renal cell lineages. Dysregulation of miRNA expression disrupts early kidney development and has been implicated in the pathogenesis of developmental kidney diseases. In this Review, we summarize current knowledge of miRNA biogenesis and function and discuss in detail the role of miRNAs in kidney morphogenesis and developmental kidney diseases, including congenital anomalies of the kidney and urinary tract and Wilms tumor. We conclude by discussing the utility of miRNAs as potentially novel biomarkers and therapeutic agents.


Kidney Neoplasms , MicroRNAs , Wilms Tumor , Gene Expression Regulation , Humans , Kidney/metabolism , Kidney Neoplasms/genetics , MicroRNAs/genetics , Wilms Tumor/genetics
3.
Genomics ; 114(1): 278-291, 2022 01.
Article En | MEDLINE | ID: mdl-34942352

Mammalian nephrons originate from a population of nephron progenitor cells, and changes in these cells' transcriptomes contribute to the cessation of nephrogenesis, an important determinant of nephron number. To characterize microRNA (miRNA) expression and identify putative cis-regulatory regions, we collected nephron progenitor cells from mouse kidneys at embryonic day 14.5 and postnatal day zero and assayed small RNA expression and transposase-accessible chromatin. We detect expression of 1104 miRNA (114 with expression changes), and 46,374 chromatin accessible regions (2103 with changes in accessibility). Genome-wide, our data highlight processes like cellular differentiation, cell migration, extracellular matrix interactions, and developmental signaling pathways. Furthermore, they identify new candidate cis-regulatory elements for Eya1 and Pax8, both genes with a role in nephron progenitor cell differentiation. Finally, we associate expression-changing miRNAs, including let-7-5p, miR-125b-5p, miR-181a-2-3p, and miR-9-3p, with candidate cis-regulatory elements and target genes. These analyses highlight new putative cis-regulatory loci for miRNA in nephron progenitors.


Chromatin , MicroRNAs , Animals , Cell Differentiation/genetics , Chromatin/genetics , Chromatin/metabolism , Kidney/metabolism , Mammals/genetics , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Nephrons/metabolism , Stem Cells
4.
JCI Insight ; 4(24)2019 12 19.
Article En | MEDLINE | ID: mdl-31743113

Proteinuric chronic kidney disease (CKD) remains a major health problem worldwide. While it is well established that the progression of primary glomerular disease induces tubulointerstitial lesions, how tubular injury triggers glomerular damage is poorly understood. We hypothesized that injured tubules secrete mediators that adversely affect glomerular health. To test this, we used conditional knockout mice with tubule-specific ablation of ß-catenin (Ksp-ß-cat-/-) and subjected them to chronic angiotensin II (Ang II) infusion or Adriamycin. Compared with control mice, Ksp-ß-cat-/- mice were dramatically protected from proteinuria and glomerular damage. MMP-7, a downstream target of ß-catenin, was upregulated in treated control mice, but this induction was blunted in the Ksp-ß-cat-/- littermates. Incubation of isolated glomeruli with MMP-7 ex vivo led to nephrin depletion and impaired glomerular permeability. Furthermore, MMP-7 specifically and directly degraded nephrin in cultured glomeruli or cell-free systems, and this effect was dependent on its proteolytic activity. In vivo, expression or infusion of exogenous MMP-7 caused proteinuria, and genetic ablation of MMP-7 protected mice from Ang II-induced proteinuria and glomerular injury. Collectively, these results demonstrate that ß-catenin-driven MMP-7 release from renal tubules promotes glomerular injury via direct degradation of the key slit diaphragm protein nephrin.


Kidney Tubules/pathology , Matrix Metalloproteinase 7/metabolism , Membrane Proteins/metabolism , Renal Insufficiency, Chronic/pathology , beta Catenin/metabolism , Angiotensin II/toxicity , Animals , Cells, Cultured , Disease Models, Animal , Doxorubicin/toxicity , Humans , Kidney Tubules/metabolism , Male , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Podocytes/metabolism , Podocytes/pathology , Podocytes/ultrastructure , Primary Cell Culture , Proteolysis , Rats , Renal Insufficiency, Chronic/chemically induced , beta Catenin/genetics
5.
Curr Top Med Chem ; 12(19): 2103-13, 2012.
Article En | MEDLINE | ID: mdl-23167799

Maternal Wnt/ß-Catenin signaling is essential to establish dorsal-specific gene expression required for axial patterning in Xenopus. Deregulation of this pathway causes axis phenotypes in frog embryos. In adult life, mutations in the Wnt pathway components are associated with many diseases, such as polyposis coli; osteoporosis-pseudoglioma syndrome (OPPG); skeletal dysplasia; neural tube defects, cancer and many others. Thus, a better understanding of Wnt/ß-catenin signaling will have great and significant impact on Biology and Medicine. In this aspect, natural compounds are potential targets as novel molecules that could modulate the Wnt pathway. For instance, flavonoids are a large group of natural compounds found in plants that modulate important cellular and molecular mechanisms related to diseases, but the specific in vivo mechanism of action of most flavonoids remain unknown. In this way, Xenopus embryos may provide an efficient model, since it is frequently used to test and identify the role of molecules that affect Wnt/ß-catenin signaling. Here, we describe a combination of approaches to outline and characterize the role of two flavonoids, quercetin and rutin, on Wnt/ß-catenin signaling, using Xenopus embryos as an experimental model. Our data support that quercetin is potential in vivo modulator of canonical Wnt signaling and that this effect might depend on the structure of this molecule, as we did not observe any effect with rutin treatment, a flavonol structurally-related to quercetin. This model is useful to analyze effects of quercetin and other flavonoids in vivo and to provide further understanding of how natural compounds can modulate signaling pathways, using Xenopus embryos as a fast and efficient reading of in vivo effects of those compounds.


Biological Products/pharmacology , Drug Discovery , Embryonic Development/drug effects , Signal Transduction/drug effects , Wnt Proteins/metabolism , Xenopus/embryology , beta Catenin/metabolism , Animals , Base Sequence , DNA Primers , Reverse Transcriptase Polymerase Chain Reaction
...